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S U M M A R Y  
An asymptotic theory is developed for the study of nonlinear wave motion of a rotating viscous fluid with a cylindrical 
free surface. The method used here is based upon a multiple-parameter singular perturbation scheme within the fiame- 
work of long-wave approximation. Wave speed and a set of asymptotic evolution equations are derived, and a criterion 
for the instability of the wave motion is defined. 

1. Introduction 

In recent years there has been growing interest in the study of motions of a viscous fluid with 
free surface. Notably a large number of papers on a viscous fluid flow down an inclined plane 
and similar problems have appeared (Benjamin [1], Yih [2], Benney [3], Mei [4] and many 
others). In this paper we shall consider nonlinear wave motion of a viscous fluid with a cylin- 
drical free surface. The fluid is assumed to be supported by a rotating circular cylinder and 
pulled toward the axis of the cylinder by a constant body force, and on the free surface a tangen- 
tial stress is prescribed. Such a mathematical model is of geophysical significance, and may be 
relevant to long waves generated by wind, propagating along a latitude on the ocean or on a 
layer of the atmosphere, where the viscosity of the fluid plays an indispensable role. Although 
the fluid motion considered here is still assumed to be two-dimensional, our approach is 
different from those used previously, We shall refrain from formulating the problem in terms 
of a stream function, the existence of which, needless to say, relies upon the fluid motion being 
two-dimensional. Hence, the method developed in this paper can readily be generalized to 
three-dimensional problems (Shen and Shih [5]). 

The basic idea involved in our approach is based upon one conceived by Shen [6] to study 
internal waves in a stratified inviscid fluid supported by a circular cylinder. In that case, periodic 
waves ofcnoidal type were found to rotate about the cylinder at a constant angular speed. For  
the problem studied here, the same conjecture is made that nonlinear waves may also appear 
following a rotating cylindrical system at a constant angular speed. We formulate the problem 
in section 2, and the wave speed and evolution equations governing the wave motion are 
respectively determined in sections 3 and 4. It is noted that we essentially consider here a small 
but nonlinear perturbation of a given equilibrium state. However, since our asymptotic scheme 
is rather general in scope, an evolution equation governing large-amplitude waves will also 
be derived in section 5. This unified approach may clarify some of the seemingly paradoxical 
nature of the singular perturbation method dealing with free surface motions of a viscous fluid. 
In section 6, we shall derive a criterion for the instability of the wave motion, and a discussion 
of the results is also given. 

2. Formulation of the Problem 

We consider an incompressible, viscous fluid of uniform density p and depth h, supported by a 
rigid circular cylinder of radius a and pulled toward the axis of the cylinder by a constant 
body force g. The cylinder is assumed to rotate at an angular speed co*, and the force acting 
* This research was supported in part by the National Science Foundation under Grant GP-11319. 
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,I ~,.~= 0 

Figure 1. The rotating coordinate system. 

on the free surface is represented by a tangential stress a* perpendicular to the direction of the 
axis. It is assumed that a surface wave has been generated and we choose a cylindrical system 
(r*, 0") rotating at a constant speed f2* to observe the wave motion (Fig. 1). In reference to this 
rotating coordinate system, the equations governing the fluid motion are (Landau and 
Lifschitz [7]) 

(r* V*)~,+ V~ = O, (1) 

p [U* q- U* Or** q-(r*) 1 V* U f -  (V*)2/r * -  2s V*-(g2*) 2 r*] 
= -p*~,-pg+#[U$~,+ Uge,(r*) -2 + US/r*-ZVg(r*) - 2 -  U*(r*)-2], (2) 

p [V~* + U* V~* + V* V4~/r* + U* V*/r*  + 2(2* U*] 

= - p~,/r* + # [ V~*r, + V~,ee (r*) 2 + V~*/r* + 2 U~ (r*)-  2 _ V* (r*)-  23, 

subject to the conditions 

~ * -  u* + v*  ~ / r*  = O, 

p* - 2# U* + # (Ug/r*  + V~* - V*/r*)  ~$/r* = a* ~$/r* , 

# (Ug/r*  + ~*  - V*/r*)  + [p* - 2# (Vg/r* + U*/r*)]  4~,/r* = a * ,  

at the free surface r* = a + h + ~* (~b, z*), and 

U* = 0 ,  V* = (co*-~2*)a, 

(3) 

(4) 

(5) 

(6) 

(7) 

at the surface of the cylinder r *=  a, where (U*, V*) is the velocity vector, z* the time, p* the 
pressure, # the constant viscosity coefficient, and for simplicity a* is assumed to be constant and 
surface tension neglected. 

To non-dimensionalize the equations, we define 

r = r*/a, r = z*(g/a) +, U = U*(ga)  -~,  V = V*(ga)  -~,  

(2 = f2*(g/a) ~, ~ = ~*/a, o) = oo*(g/a) ~, p = p*(pga)  1, 

a = a*#  1 (g/a)~, R = ap# l(ga)�89 b = ( a+h) /a .  

For the purpose of constructing a stretching transformation, a class F of continuous functions 
f ( e )  is introduced, which possess the following properties: 
(1) f(e)  > 0  for 0<  e<eo and lim ~.~o f ( e )=0 .  
(2) For  any f, g ~ F, we say f =  g if lim~+ o f / 9  = M > 0 where M may be set equal to 1 , f  > g if 
l im~ o f / 9  = oo, a n d f  < g if l im~ o f / g  = 0. Betweenfand g one of the relations defined should 
hold. 
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By means of the elements in F, we introduce the following stretching transformation 

t=/3~, 0=~0,  u = .  ~U, 

where e,/3 e F. The stretching of z, ~b and u reflects the following considerations. We wish to 
study long-wave motions at large time, and the magnitude of the radial velocity component is 
assumed to be small. However, we use the same parameter c~ to stretch both u and 4) so that the 
equation of continuity is invariant under the stretching transformation. It is also noted that the 
parameters R, co, a, b and f2 are all assumed to be independent of e. We write v, t/respectively 
for V and (. In terms of the new variables, (1) to (7) become 

(ru)~ + Vo = O, 

/3o~ut § ot2UUp § ~2r- l VUo-- V2r - 1 -  2 ~ v -  f22r 

= - P r -  1 + R -  a (O:Urr+Ot3r-Zuoo+OtUrr 1 _2Otvor-Z_o:ur 2) ,  

(8) 

(9) 

/3vt + c~uG + CWVo r -  ~ + ~uvr-  a + 2af2u 

= -C~po r - l  +R-x(Gr+o:2voor  2 + G r - l  + 2 e 2 u o r - Z - v r - 2 ) ,  

/3~l, + ~ ( -  u + Vrlo r - l )  = 0 

R p _ 2 ~ G + ( ~ 2 r - , u o + v _ v r  l_a)C~rlor 1 = 0  at r = r + ~ / ,  

cte uor-  a q- G -  vr * - a § [ R p -  2c~r l (Vo § bl) ] (X~oF- l = o 

U = 0 ,  V = (9--f2 at r = l .  
Assume that u, v, p and t/possess asymptotic expansions 

U=UO§ §247247 I 
V =VO§247247247 

P = P o + 6 1 P , + 6 2 P 2 + . . . + a , P , ,  j (15) 

r /= t/o + 31 t/x + 32t/2 + ... + c~,r/H, 

where bje F, 3~+ 1 < 5~. Substitution of (15) in (8) to (14) will yield a sequence of equations and 
boundary conditions, and different asymptotic theories are obtained depending upon c~ >/3 
or ~ =/3. A detailed explanation of these cases and others may be found in Shen [8]. In what 
follows, we shall be mainly concerned with the more difficult case c~ >/3, that is, the time scale 
is much larger than the length scale in the direction of wave propagation. The case c~=/3 
corresponds to large-amplitude wave motions and will be discussed in section 5. 

3. Asymptotic Motion of Small-Amplitude Waves--Zeroth and First Approximations 

(lO) 

(11) 

(12) 

(13) 
(14) 

We assume that c~ >/3, Uo = t / o = 0  and Vo, Po are functions of r. From (8) to (14), v o, Po satisfy 

(1.6) 

(17) 

(18) 

(19) 

(20) 

(21) 

_ v 2 r  1 - 2 ( 2 v - ( 2 2 r = - p o t - l ,  

VOrr+Vorr 1 - - V o r - 2  = 0  , 

P0 = 0 
at r = b ,  

v o r - v o b  l - a = 0  

v o = c o - f 2  at r = l .  

It is readily found from (16) to (20) that 

Vo = (co-  ~2)r + ab2 ( r -  r - ~)/2, 
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Pot = r - 1  [(Dr q- 6b 2 (r  - r -  1)/212 - 1. (22) 

From (18), it follows that 

Po = (b - r ) -  (b 2 - r 2) [((D + ab2/2) 2 + a 2 bZ/(4r2)]/2 + ab 2 (co + ab2/2) In (b/r). 

The equations for the first approximation are 

(rul) r + Vlo = 0,  (23) 

2v0 v l r -  1 + 2•vl = Plr ,  (24) 

taarr+Virr-l--Va r -2  = 0 ,  (25) 

- u l + b - l v o t h o  = 0 ] (26) 

P l + P o r t / l = 0  ~ at r = b ,  (27) 

(Vorr-vorb -1 + l)0 b-2)r/1 +vl , - - v lb  -1 = 0 J (28) 

u l = 0 ,  v 1 = 0  at r = l .  (29) 

The general solution of (25) is 

/31 = f l  (0, t) r + g l (0, t) r-1 (30) 

From (21) and (28)to (30), we have 

g, = - a b t h ,  f l  = abrh, vl = f ibr i l ( r -r - i ) .  (31) 

We integrate (23) with respect to r from r =  1 to r=b, make use of(26), (29) and (31), and obtain 

rho [(Vo)~=b +ab f bl (r--r-1)drl = 0 . 

Assume that th0~0, and we have, by (21), 

O = ( o + a ( b 2 - 1 n  b - 1 ) .  

From (23), (24), (27) and (29), it is obtained that 

(32) 

Ux = _abtllo r l[(r 2_1) /2_1n  r ] ,  (33) 

Pl = 2abrhL~(D ~ / + ~ - ) ( r2 -b2) /2 - ( (D+ab2) ln ( r /b ) -ab2(r -2 -b -2 ) /4] -Po~(b ) rh  " 

(34) 

4. Asymptotic Motion of Small-Amplitude Waves--Second Approximation 

To derive asymptotic equations governing the evolution of the free surface motion, we should 
proceed to the equations for the second approximation. Here the orderings among the small 
parameters need be taken into account. First consider the case c~ = 61, 62 = fl = 62, which leads 
to an equation similar to Burgers', and we have, from (8) to (14), the equations for the second 
approximation 

(ru2)r + v20 = 0 ,  (34) 

- ( ,v2r-a+2vor-a+2f2v2)= - p 2 p + R - t ( u ~ r r + u l r r - l - 2 v l o r - l - u l r - 2 ) ,  (35) 

UlVor+VOvlOr-l+UlVor-l+2f2Ul = - -p lor - l+R- l (v2r~+r  lv2r--/)2r-2),  (36) 
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q l , - U l r t h + r h o b - l ( v l + v o r r h - b - l r h V o ) + V o r l 2 o  b -1  = u  2 ] (37) 

R ( p  2 + p,r + pot t/2 -t-porrrlZl/2) - 2U,r ---- 0 
at r = b ,  (38) 

v2,-b-  l v2 + (Vo.- Vorb- X + vob- 2)+ (V,rr- Vl b- l + v, b- 2) I 

- rl 2 (b-3  Vo - b -  2 Vor + b-X Vo~J2 -  vo~r~/2) = 0 (39) 

u 2 = v 2 = 0  at r - 1 .  (40) 

By (21), (30), (33) and (34), we may  write (36) as 

V z ~ + r - ' v z r - V 2  r -2  = R v l ( r ) t h o  (41) 

where 

v 1 (r) = a 2 A (r)+ aooB ( r ) -  092 br -1 + r - ' ,  

A(r )  = br -1  [ ( -b2- t  - ln b +  l ) r 2 - b 2 1 n  r - b 2 r  -2  3b4 �88 - ~ - +  b 2(3+21nb)- l n b -  4'9~ 

B (r) = br -1  (r 2 _ 2b 2 + 2 In b + 2). 

The general solution of (41) may be expressed as 

v 2 = fa(O, t )r+92(O,  t ) r - ' + I ( r ) t h o ,  (43) 

where 

I(r)  = (R/2).[i  ( r - r - '  ~2)v 1 (~)d~. (44) 

By (39), (40) and (43), we obtain 

f2 + .q2 = 0 ,  

f2 = [bI ( b ) -  b 2 I '  (b)] th0/2 + abtl 2 - atl2 /2 , 

where I ' ( r )=dI ( r ) / d r ,  and it follows from (43) that  

v2 -- [ ( r -  r -  1)(bl (b) - b 2 I '  (b))/2 + I (r)] tl ,o + (r - r -  1)(abtl2 _ atl2 /2) . (45) 

We now integrate (34) with respect to r from r = 1 to r = b, make use of (37), (40) and (45), and 
obtain, at r = b, 

bu2 = b t h t - b u , , t h  + tllo(V, + V o ~ t h - b -  l th Vo) + Votl2o 

= - { [ ( r - r - 1 ) ( b I ( b ) - b 2 I ' ( b ) ) / 2 + I ( r ) ] r h o o + ( r - r - 1 ) ( a b r l 2 o - a r h r h o ) }  d r ,  
1 

that  is, 

btht + a (b 2 + 2 In b)~h t/10 q'- (R /32 ) (A ,  e) 2 + B, ao~ + C,  a 2 + D,)t/,00 = 0 ,  (46) 

by (21), (31), (33), (42) and (44), where 

A1 = 4 b  s - 1 6 b  3 In b - 4 b ,  

B, = 6b 7 - b 5 (36 In b + 5) + b 3 [32 (ln b) 2 + 32 In b -  10] + b (8 In b + 9),  

C, = 5b9-b7(22 In b +  19)+b 5 [24(ln b)2 + 75 In b +  1] 

- b 3 [24(ln b) 2 + 6 In b -  47] - b (3 In b + 2), 

D 1 = - 4 6 4 + 1 6 b  2 In b + 4 ,  

and we note that  the coefficient of t/z0 vanishes because of (32). 
Two more cases of interest should also be considered; the details of derivation of the evolu- 

t ion equations are the same as before and will be omitted. 

Journal of Engineerin9 Math., Vol. 5 (1971) 63-70 



68 

(1) 3=32 ,  32 >0{ 2, 0{=31 
This case yields one-dimensional  diffusion equat ion 

br/at-[-(R/32)(A 1 (2) 2 + B  1 ao )+  Ca 0"2 -[-Dl)r/lOO = O. 

M .  C. Shen 

(47) 

(2) /~=0{61, 62=62 , 31 >0{ 
The second order  derivative in (46) disappears, and we have 

bq l t+a (b2  + 2  in b)qlr/ao = 0 .  (48) 

5. Asymptotic Motion of Large-Amplitude Waves Zeroth Approximation 

For  large-ampli tude waves, we let 0{ = fl and assume that  u 0, Vo, Po and ~/o are all t ime-depen- 
dent. In this case, we need not  use a rotat ing frame and may set (2=0.  As e ~ 0 ,  we have, from 
(8) to (15), the equat ions for the zeroth approximat ion  

(ruo)r + Voo = 0 ,  (49) 

- r - 1  : _ P o t -  1 ,  (50 )  

VOrr+Vorr - a - v O  r-2  = 0 ,  (51) 

qo , -Uo+Vo~loo(b+qo)  -1  = 0 ] (52) 

Po = 0 / at r = b + r/0, (53) 

v o r -  v o (b + r/o) 1 = a (54) 

u = 0 ,  V o = m  at r - - 1 .  (55) 

The general solution of (51) is 

Vo = fo (0, t)r + 90 (0, t ) r -1  (56) 

By (54) and (55), we have 

f o + 9 o  = ~o, - 2 y o ( b + r / o )  -1 = a ,  

and it follows from (56) that  

v o -- [~o + a (b + r/o)2/2] r -  a (b + r/o)Z/(Zr). (57) 

We integrate (49) with respect to r from r =  1 to r = b + r / o = ~ ,  make  use of (52), (55) and (57), 
and obtain, at r = 4, 

Uo~ = ~lot+Vor/oo = - voodr , 
1 

that  is, 

~,+ ~0 ((o+ ~ 2 - a  In ~. - o-) = O. (58 )  

6. Discussion 

So far we have achieved a unified approach  to the derivat ion of various asymptot ic  equations,  
each of which, under  appropr ia te  conditions, describes certain stage of the evolution of  a su)- 
face wave on the rotat ing fluid. The results may  be summarized as follows. For  0{ > fl, the 
asymptot ic  equat ions for small-amplitude waves are obtained, and the angular  speed of a 
wave is near the value of the angular  speed f2 given by (32). The solution methods  of (46) to 
(48) are well-known (Hopf  [9],  Cole [10]), and a detailed study of periodic solutions of (46) 
may  be found in Rosenblat t  [11].  The case 0{ = fi leads to an asymptot ic  equat ion for large- 
ampli tude waves. It generally does not  possess a cont inuous periodic solution for all time, 
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hence indicates the breaking of a surface wave. A discussion of such equation may be found in 
Courant and Hilbert 1-12]. Indeed, equation (48) also exhibits the same property. 

Besides wave breaking, a viscous flow may not always remain laminar. Can the asymptotic 
theory yield a criterion for the instability of the wave motion? This question is answered by 
making the following observation. It is known that the initial value problems for (46) and (47) 
are not well-posed if the coefficient (R/32) Q(co, o., b )=(R/32) (A  10) 2 q- B 1 o.o)-[- C 1 (7 2 +D1) of 
t/100 is of the same sign as that oft/1 . that is, Q(co, o-, b) >0, and this fact may be used to define 
a criterion for the instability of the wave motion. We say'that the wave motion is asymptotically 
unstable if Q (co, o., b) > 0 and asymptotically stable if Q (co, o., b) < 0. For a fixed b, Q (co, o., b) = 0 
defines a conic section in the co, o.-plane, and specifies the region of asymptotic stability of the 
wave motion. To illustrate this result, it is best to consider a special case. Assume b = 3, and the 
condition Q (co, o., 3)= 0 yields 

30) 2 + 16.10coo.+ 188.76 o. 2 = 1, 

that is, 

(0)'/0.55) 2 + (o.'/0.073) 2 = 1, 

where (co', o-') are points in reference to a coordinate system obtained by rotating the co, o.- 
system by an angle of -2.49 ~ The wave motion is asymptotically stable for (co, o.) in the in- 
terior of an ellipse, and asymptotically unstable otherwise. A plot of the ellipse is given in 
Fig. 2. 

cr 0 -t 

/ f  

CO t 

Figure 2. Region of asymptotic stability for b -  3. 

Finally we consider a simple example to see how a discontinuous periodic disturbance 
prescribed initially may be smoothed out by (46) with Q(co, a, b)<0.  Let f (O, t)=(o./b)- 
(b2+ 2 In b)t/1. (46) in terms o f f  becomes 

f +fro = Vfoo, (59) 

where 

v = - (R/32b) Q (0), o., b) > O. 

Assume t h a t f  (0, 0) = 4vO, - rc < 0 < ~z, with period 2~ and j'~_ ~ f (0, 0) dO = 0, and we are looking 
for a continuous periodic solution of (59) satisfying the initial condition. Following [9], [10], 
we let 

f ~ (o(0, t )=  exp ( -  1/2v)u(~, t)d@ , 
o 

and have the following problem posed for (p (0, t): 

~ot=v~Ooo for - o o < 0 < o o ,  t > 0 ,  

q)(O, t) = ~o(O+2rc, t) for - oo < O< oo, t > 0 ,  

(p (0, O) = exp ( -  02) for - ~z < 0 < ~ with period 2~. 

It is found that 
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o o  

~o = ao/2 + ~ a, exp ( -  n 2 Vt) COS nO, 
n = l  

where 

_(i exp l-0 1 cos a n 

and the solution o f f  is given by 

f = -2Vq)o/~O 

It is easily shown that 

limt~o f(O, t )=  4vO pointwise for - ~ <  0 <  ~ with period 2~c. 

For large t, 

j. 4vao a al exp ( -  vt) sin 0 ,  
and the initial saw-tooth wave has been smoothed out to become a sinusoidal wave. 
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